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Measurement of land surface temperature from oblique angle
airborne thermal camera observations
Ryan A. E. Byerlay, Manoj K. Nambiar, Amir Nazem, Md. Rafsan Nahian,
Mohammad Biglarbegian and Amir A. Aliabadi

School of Engineering, University of Guelph, Guelph, Ontario, Canada

ABSTRACT
This paper presents a novel airborne remote sensing method using
thermal imaging to directly georeference and calculate Earth sur-
face temperature with a high spatiotemporal resolution. A tethered
balloon is used to elevate an uncooled thermal camera in the field.
When deployed, images with oblique view angles of the surround-
ing Earth surface are collected. Images recorded from a field envir-
onmental monitoring campaign in a northern Canadian mining
facility are processed with open source software, and it is shown
that they successfully represent the diurnal and spatial surface
temperature variations within the facility. Furthermore, in compar-
ison to MODerate resolution Imaging Spectroradiometer (MODIS)
satellite images, the approach results in a median absolute error of
0.64 K, with a bias and Root Mean Square Error (RMSE) of 0.5 K and
5.45 K, respectively.
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1. Introduction

1.1. Literature review

Earth surface temperature, otherwise known as Skin Temperature (ST), is an important
geophysical variable that has been measured with remote sensing technologies since the
1970s (Patel (2006); Mildrexler, Zhao, and Running (2011)). Accurate quantification of ST is
important for many Earth system models, including meteorological, climate, and planetary
boundary layermodels (Reichle et al. (2010); Tomlinson et al. (2011); Malbéteau et al. (2018)).
Micro-, meso-, and macro-scale climate models all consider ST as a key variable, as noted by
Gémes, Tobak, and van Leeuwen (2016). Land surface temperature is a key variable when
quantifying the impacts of urban heat islands. Specifically, the diurnal impact of ST with
respect to the surrounding environment is of importance to many researchers (Kawai and
Wada (2007); Mathew, Khandelwal, and Kaul (2018)). Furthermore, macro- and meso-scale
models, including those that model the change of climate, consider ST over both land and
waterbodies as a boundary condition (Horrocks et al. (2003); Fang et al. (2018)). The impact
of ST on large freshwater lakes has also been studied as surface water temperature
influences thermal stratification in lakes (Kolodochka (2003); Moukomla and Blanken
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(2016)). ST can be quantified as a function of Long Wave Infrared Radiation (LWIR) emitted
from the Earth’s surface (Wang et al. (2005)). The emitted LWIR is an important variable
when considering the Earth energy budget from incoming solar radiation (Wang et al.
(2005)). Before the advent of satellites and other remote sensing platforms, multiple point
sources recording either surface temperature or air temperature were used in conjunction
with weighting algorithms and other Geographic Information Systems (GIS) techniques to
spatially represent ST (Rahaman, Hassan, and Chowdhury (2018)). These historical methods
can introduce significant inaccuracies during interpolation of the data, as a result, remote
sensing tools have since been utilized to reduce these data analysis errors (Rahaman,
Hassan, and Chowdhury (2018)).

Conventionally, ST has been quantified from remote sensing satellites with onboard ST
sensors including the MODerate Resolution Imaging Spectroradiometer (MODIS), the
Advanced Baseline Imager (ABI), the Enhanced Thematic Mapper Plus (ETM+), and the
Thermal InfRared Sensor (TIRS) (Inamdar et al. (2008); Tomlinson et al. (2011)). Landsat 8
sensors which derive ST, record data within the Thermal InfRared (TIR) or LWIR spectra
between 8 µm and 15 µm (van der Meer (2018)).

MODIS, located on both the Terra and Aqua satellites, records two distinct thermal
images daily, approximately three hours apart at a 1 km � 1 km spatial resolution
(Crosson et al. (2012); Kumar (2014); Liu et al. (2017)). The ABI, located on the
Geostationary Operational Environmental Satellite (GOES) satellites, is capable of capturing
thermal images every 5 min with a spatial resolution of 2 km � 2 km (Cintineo et al. (2016);
Schmit et al. (2017)). Furthermore, Landsat satellites are capable of recording TIR images.
The Landsat 7 ETM+ can capture TIR images at a spatial resolution of 60 m � 60 m and the
Landsat 8 TIRS can record TIR images at a spatial resolution of 100m � 100m. Both Landsat
satellites have a time resolution of 16 days (Chastain et al. (2019)).

Satellite-based sensors are unable to record ST with both a high spatial and temporal
resolution (Zakšek and Oštir (2012)). With the development of small Unmanned Aerial
Systems (sUASs) and the miniaturisation of thermal camera technology, airborne plat-
forms, such as drones, kites, and blimps have been used to quantify ST with a high
spatiotemporal resolution (Berni et al. (2009); Klemas (2015)). Furthermore, coupling
sUAS platforms with oblique thermal imaging technology and concurrent image proces-
sing methods can result in increased ST coverage.

Recently it has become increasingly common for sUAS platforms to include thermal
cameras (Colomina and Molina (2014)). Uncooled thermal cameras are most often used on
sUASs as they are physically lighter, inexpensive, and require less power to operate as
compared to cooled thermal cameras (Sheng et al. (2010); Ribeiro-Gomes et al. (2017);
Rahaghi et al. (2019)). There are many types of sUAS devices used to deploy camera
systems, including but not limited to fixed wing and multi-rotor drones, kites, blimps, and
balloons (Duffy and Anderson (2016)).

Tethered balloons are another aerial platform that have several advantages as com-
pared to conventional sUASs. Tethered balloons can be deployed for hours without
changing batteries, be launched in remote and complex environments where drones
are unable to fly (e.g. airports), are inexpensive relative to other sUAS platforms, and their
altitude can be precisely controlled, amongst other advantages (Vierling et al. (2006)).
A few studies have been completed involving thermal imaging and tethered balloons.
Vierling et al. (2006) deployed a helium-filled, tethered aerostat equipped with athermal
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infrared sensor, capable of lifting a payload of 78 kg and flying in a maximum wind speed
greater than 11 m s�1. Rahaghi et al. (2019) launched a tethered-helium-filled balloon
equipped with a FLIR Tau 2 thermal camera over Lake Geneva, Switzerland, under weak
wind conditions.

Airborne sUAS vectors, including drones and balloons, have been noted to be deployed
in maximum wind speeds up to 10 m s�1, after which sUAS performance is significantly
degraded (Reintsma et al. (2018)). von Bueren et al. (2015) and Hardin et al. (2019) reported
that many manufacturers claim that Unmanned Aerial Vehicles (UAVs) are capable of flying
in wind speeds up to 8.3 m s�1. However, Hardin et al. (2019) stated that wind speeds
greater than 7 m s�1 can impact flight time and performance. Ren et al. (2017) noted that
the DJI Phantom 4 quadcopter, a popular drone produced for the consumer market, has
a maximum wind resistance speed of 10 m s�1. Puliti et al. (2015) collected earth surface
images from a UAV over multiple flights in wind speeds up to 7 m s�1, where each flight
lasted approximately 24 min. Boon, Drijfhout, and Tesfamichael (2017) used two types of
UAVs (fixed wing and multi-rotor) for an environmental mapping study. Both UAVs were
capable of flying in a maximum wind speed of 11.1 m s�1. Rankin and Wolff (2002) used
a tethered balloon during a field campaign in which themanufacturer recommended use in
maximum wind speeds up to 12 m s�1; however, the blimp was not flown in wind speeds
above 8m s�1. Hot-air-based balloons experience inflation and positioning difficulty in wind
speeds greater than 4.17 m s�1 and helium-filled balloons were found to be destabilized in
winds greater than 1.4 m s�1 as described by Aber (2004).

With advancing sUAS technology, including the integration of Inertial Measurement
Units (IMUs) and Global Navigation Satellite System (GNSS) units, sUAS imaging systems
have been able to directly georeference images without the use of ground control
(Colomina and Molina (2014); Stöcker et al. (2017); Padró et al. (2019)). The angular and
positioning data provided by these systems can either be used directly or processed with
Real-Time Kinematic (RTK), Post-Processing Kinematic (PPK), Precise Point Positioning (PPP),
or differential correction techniques prior to being utilized in direct georeferencingmethods
(Moen, Pastor, and Cohen (1997); Zhang, Guo, and Li (2012); Bakuła et al. (2017); Stöcker
et al. (2017)). Without the use of differential correction for geographical coordinates
calculated from direct georeferencing, positional accuracy in the range of 2–5 m is typical
(Turner, Lucieer, and Wallace (2014); Whitehead et al. (2014)). Padró et al. (2019) quantified
Root Mean Square Error (RMSE) for GNSS direct georeferencing without correction and PPK
methods with respect to pre-defined ground control point locations. Planimetric RMSE for
the uncorrected GNSS direct georeferenced data was 1.06 m, while vertical error was
4.21 m. The RMSE for the PPK methods were at least one order of magnitude less than
that of the uncorrected direct georeferencing method. However, Padró et al. (2019) noted
that the uncorrected GNSS approach may be appropriate, such as in cases of analysing
satellite images with pixel size of greater than 2 m.

Thermal cameras use microbolometer focal plane arrays to observe incoming radiant
energy (FLIR-Systems (2012); Olbrycht andWięcek (2015)). When an image is captured, the
microbolometer array represents the observed energy as a signal value (commonly
referred to as digital numbers or A/D counts) which includes the radiant energy emitted
from the atmosphere, reflected by the surface, and recorded from the imaged surface of
the object (Zeise, Kleinschmidt, and Wagner (2015)). Microbolometer temperature is
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known to vary as a function of sensor, camera, and ambient temperatures (FLIR-Systems
(2012); Budzier and Gerlach (2015); Lin et al. (2018)). Cooled thermal cameras are sig-
nificantly more sensitive than uncooled systems and provide more accurate absolute
temperatures (Ribeiro-Gomes et al. (2017)). However, current cooled camera technology
requires an airborne vector capable of lifting more than 4 kg, which is greater than the
capacity of sUAS and smaller tethered-balloon-system payloads (Torres-Rua (2017)). It has
been noted in literature that uncooled thermal cameras can be radiometrically calibrated
to reduce uncooled camera error to � 5 K (Gallardo-Saavedra, Hernández-Callejo, and
Duque-Perez (2018); Kelly et al. (2019)).

Oblique imaging systems coupled with sUAS or tethered-balloon systems can sig-
nificantly increase the recorded land surface area as compared to nadir imaging
systems. However, radiometric thermal imaging systems can be impacted by non-
nadir setups, where surface temperature error is introduced as a function of observa-
tion angle (Dugdale (2016)). Viewing angles greater than 30� of nadir over waterbodies
have been noted to introduce surface temperature error of approximately 0.5
K (Torgersen et al. (2001); Kay et al. (2005); Dugdale (2016)). This error is introduced
as the surface emissivity of water changes as the viewing angle of the thermal camera
becomes more oblique and reflected radiation from the surface increasingly influences
the thermal camera internal sensor (Dugdale (2016)). Horton et al. (2017) noted that
sea surface temperature emissivity varied between 0.36 and 0.98 for viewing angles
between 90° (nadir) and 5° (below horizontal), respectively. James et al. (2006)
recorded ground-based oblique thermal images of lava flows and quantified a � 3%
difference in radiative power from the lava flows where error increases as more distant
objects had high emissivities as compared to closer ones. More distant objects were
likely to be influenced the most by increasingly oblique viewing angles. In the study,
they accounted for atmospheric transmission effects of the radiation (James et al.
(2006)). Hopskinson et al. (2010) recorded ground-based oblique thermal images of
a glacier at varying diurnal times. It was noted that the maximum temperature
difference was � 3 K, where the emissivity was assumed to be 0.98. However, the
calculated glacier surface temperatures were not validated. As a result, it is possible
that these temperature variations could be influenced by transmitted and reflected
radiation.

1.2. Technology gaps

High spatial and temporal resolution data of the Earth’s surface capable of characterizing
diurnal ST patterns is difficult to obtain from conventional remote sensing sources
(Malbéteau et al. (2018)). Furthermore, the use of open-source direct georeferencing
methods and surface temperature calculation for thermal images collected from airborne
vectors at oblique angles are not widely reported (Verykokou and Ioannidis (2018)). The
coupling of direct georeferencing thermal images captured from a tethered-balloon-
based vector is novel, and the focus of this paper is the development of an open-source
image processing workflow to map surface temperatures with a high spatiotemporal
resolution.
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1.3. Objectives

In this paper, the development of an open-source, Python-based thermal image direct
georeferencing and ST calculation method is described and evaluated with respect to
MODIS satellite imagery. The developed program quantifies ST at a high spatiotemporal
resolution as compared to conventional satellite sources. The images were collected
during an environmental monitoring field campaign conducted within a remote, northern
Canadian mining facility in May 2018 (Figure 3). In total, 11,697 images were recorded. Of
this total, approximately 98% of the images were used in the analysis.

Section 2 describes the instruments used in the field campaign as well as the devel-
oped imaging workflow and the picture collection procedure followed during the field
campaign. Section 3 includes the plots of the geographic distribution of ST over four-hour
time intervals, an absolute comparison between ST derived from the method, ST derived
from a MODIS data product with respect to the mining facility, and a Principal Component
Analysis (PCA) of ST spatial variation during each four-hour interval. Section 4 concludes
the paper and details future work plans.

2. Methods

2.1. Experimental materials

The images processed in the paper were obtained from a DJI Zenmuse XT 19-mm lens
uncooled thermal camera, which was located onboard a customized airborne platform:
the Tethered And Navigated Air Blimp 2 (TANAB2). In addition to the thermal camera,
a TriSonicaTM anemometer, measuring wind speed, wind direction, air pressure, and air
temperature at 10 Hz, a TriSonicaTM datalogger, and a DJI N3 flight controller were
included onboard the TANAB2. The camera, TriSonicaTM system, N3, and related equip-
ment, including batteries, were all located on the TANAB2 payload, referred to as the
gondola. The layout of the instruments on the gondola, the dimensions of the gondola
and the TANAB2 in flight are detailed in Figure 1.

(a) (b)

Figure 1. (a) Diagram of the gondola on the TANAB2; (b) the TANAB2 deployed during a field
environmental monitoring campaign in May 2018.
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The TriSonicaTM anemometer has a temperature measurement range of � 40-80
oC with a resolution of 0.1 K and an accuracy of � 2 K. Furthermore, the TriSonicaTM

anemometer has a pressure measurement range of 50–115 kPa with a resolution of 0.01
kPa and an accuracy of � 1 kPa.

The DJI Zenmuse XT radiometric thermal camera with a 19-mm lens is sensitive to
radiation within the 7.5–13.5 µm band and has a focal plane array resolution of 640 �
512 (horizontal pixels by vertical pixels). The camera has a radiometric sensitivity of less
than 0.05 K and an accuracy of � 5 K. The 19-mm lens has a horizontal field of view of 32°
and a vertical field of view of 26°. The radiometric camera is also capable of recording pixel
data at 14-bit resolution.

The TANAB2 and the DJI thermal camera have been deployed and surface images have
been recorded in a remote mining site in northern Canada during dawn, day, dusk, and
night. All observations took place in May 2018. The TANAB2 was deployed a total of twelve
times at three different locations as denoted by Figure 3. Within the boundaries of the
remote mining site, the TANAB2 and DJI camera setup were used in conjunction with
a Lightbridge2 controller and either an Android- or iOS-powered smartphone. With the
TANAB2 deployed, using the Lightbridge2, the thermal camera was tilted parallel to the
horizon and was positioned at either the left- or rightmost maximum of the camera gimbal.
Methodically, the camera was panned horizontally and an image was captured approxi-
mately every 5°. When the maximum Yaw limitation of the gimbal was reached, the camera
was tilted approximately every 5° towards the Earth’s surface and the imaging procedure
repeated again until the camera was perpendicular to the ground. This imaging procedure
occurred approximately every hour during each TANAB2 launch in an effort to record the
diurnal variation of surface temperature.

A typical TANAB2 deployment included the controlled release of the TANAB2 and
gondola from the Earth’s surface, up to a maximum altitude of 200 m above ground level.
Using a manually controlled reel and rope tether, the TANAB2 was released and retrieved
at a constant rate. In general, one profile and retrieval of the TANAB2 lasted a total of
one hour. The maximum altitude of each specific profile varied as a function of environ-
mental conditions. During periods of increased wind velocities, up to three mooring lines
were attached to the TANAB2 and controlled by personnel on the ground. The use of
mooring lines allowed the TANAB2 to be deployed in environments with a maximum
wind speed of 10 m s�1 (see Figure 2). The addition of each rope results in a lower launch
altitude (and ultimately less mapped area) due to addition of weight during periods of
atmospheric instability such as the afternoons. This trade-offwas deemed acceptable as it
was imperative to launch the TANAB2 in both stable and unstable atmospheric conditions
to successfully map diurnal surface temperatures.

The TANAB2 was launched a total of 12 times at the mining facility (Figure 3), recording
approximately 50 hours of TriSonicaTM data. The details of each deployment are noted in
Table 1.

2.2. Method development

The Python-based image processing workflow was created using Python 3.5 on Ubuntu
16.04 and associated open-source software, including ExifTool 10.94 (https://www.sno.phy.
queensu.ca/~phil/exiftool/(Accessed 23 September 2019)) and ImageMagick 7.0.7. (https://
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www.imagemagick.org/(Accessed 23 September 2019)). Commands derived from these
programs were executed through the Linux terminal window within the Python script.
Data recorded by the integrated camera and flight controller system on the TANAB2 were
stored within each image file. This data was utilized within the developed mathematical
calculations.

The image processing workflow includes two general functions, one to directly geor-
eference image pixels and the other to calculate ST from selected image pixels. These two
functions will be discussed in detail separately. The process utilized to conduct the PCA of
ST is also detailed.

Figure 2. Use of three ropes controlled by personnel on the ground during a launch of the TANAB2 at
the mining facility in May 2018.

Figure 3. Diagram of the mining facility, where the black dots represent the edge of the facility, the
red dots represent the outline of the mine, the teal dots represent the outline of the tailings pond, and
the blue dots represent where the TANAB2 was deployed during the field environmental monitoring
campaign in May 2018.
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ExifTool was used to extract and assign the gondola’s longitude and latitude coordi-
nates, camera gimbal’s Roll, Yaw, and Pitch angles, and gondola’s Roll, Yaw, and Pitch
angles, located in the metadata of each image, to variables in Python. A few images were
removed from the workflow due to excessive angles of the gondola or camera. The
camera Roll angle did not significantly impact the method as the Zenmuse XT was self
stabilized. However, if the gondola Roll degree was greater than 45 degree or less than -45
degree, the camera became destabilized. Images with gondola Roll angles outside of this
range were omitted from the workflow. Furthermore, the mechanical Pitch range of the
camera was noted to be between 45° and -135°. Gimbal Pitch angles greater than 0°
primarily included images of the sky, gimbal Pitch angles equivalent to 0° were images of
the horizon, and gimbal Pitch angles less than 0� included images primarily of the ground.
It was determined that the recorded camera gimbal Pitch angle corresponded to the Pitch
angle for the middle of each image. Any images with a gimbal Pitch angle greater than or
equal to -2° were omitted from the image processing analysis. Furthermore, very oblique
pitch angles, greater than -30 ° from the horizon, were noted to possibly introduce errors
into the ST calculations (FLIR-sUAS (2016)) but were not necessarily eliminated. Based on
physical parameters of the camera, including the Vertical and Horizontal Fields Of View
(VFOV and HFOV) angles, images with a gimbal Pitch angle less than or equivalent to -76 °
were also removed from the analysis. This filter was chosen because the bottom of the
image would have a corresponding Pitch angle of the recorded gimbal Pitch angle, plus
one half of the VFOV that would result in an angle close to or less than -89 ° which may
disrupt direct georeferencing calculations. The Pitch angles filtered are related to the
compromise between ST spatial distribution and ST accuracy because the TANAB2 only
reached a maximum altitude of 200 m above ground level.

2.3. Georeferencing

As reported in literature, the Global Positioning System (GPS)-sensor-derived altitude can
vary significantly up to 50 m as stated by Eynard et al. (2012). Padró et al. (2019) reported
a vertical RMSE of 4.21 m for a system that used data collected from the GNSS system of
the UAV used in their experiment. The TANAB2 system used the DJI N3 flight controller
which includes a GNSS-Compass unit (a GPS module is included within this system). Since
an accurate measurement of TANAB2 gondola altitude was required for direct georefer-
encing of thermal images with the developed method, the hypsometric equation was

Table 1. TANAB2 launch details; times are in Local Daylight Time (LDT).
Experiment Location Start date Start time End time No. profiles Duration

1 Tailings pond 7 May 2018 21:41:00 02:47:00 14 05:06:00
2 Tailings pond 9 May 2018 03:30:00 04:00:00 2 00:30:00
3 Tailings pond 10 May 2018 02:30:00 08:30:00 21 06:00:00
4 Tailings pond 15 May 2018 04:55:00 11:00:00 22 06:05:00
5 Mine 18 May 2018 04:12:00 11:12:00 20 07:00:00
6 Mine 19 May 2018 18:52:00 23:15:00 17 04:23:00
7 Mine 21 May 2018 11:00:00 12:17:00 4 01:17:00
8 Mine 23 May 2018 01:47:00 05:30:00 10 02:43:00
9 Mine 24 May 2018 11:19:00 14:25:00 12 03:06:00
10 Mine 27 May 2018 14:38:00 17:50:00 18 03:12:00
11 Tailings pond 30 May 2018 10:55:00 18:57:00 24 08:02:00
12 Tailings pond 31 May 2018 11:07:00 14:43:00 8 03:36:00
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used to calculate altitude. The hypsometric Equation (1) uses atmospheric pressure and
accounts for atmospheric temperature changes within the formula (Bolanakis, Kotsis, and
Laopoulos (2015); Stull (2015))

z2 � z1 � aTv ln
P1
P2

� �
; (1)

where z1 and z2 represent the altitudes (in metres) corresponding to the recorded pressure
measurements (in mBar; however, the units of pressure do not affect this equation), P1 and

P2, Tv represents the average virtual temperature between the two altitudes (z1 and z2), and
a is a constant equivalent to 29.3 m K�1 (Stull (2015)). The uncertainty of error for Equation
(1) was quantified using Equations (2–4) (Ku (1966)). A sample calculation was completed

using the theory of error propagation, where P2 is 100 kPa, P1 is 101.3 kPa, and Tv is 300
K. The atmospheric pressure and temperature measurements were obtained from the
TriSonicaTM anemometer where the pressure measurement had an uncertainty of 0.01
kPa and the temperature measurement had an uncertainty of 2 K. The uncertainty calcu-
lated was 1.2 m. Note that since differential altitude from the ground is desired, the
appropriate uncertainty for the pressure is the resolution of the measurement. With this
known uncertainty, this method was deemed acceptable over using the raw GPS altitude
data provided by the DJI N3 flight controller unit.

Δ z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@z2
@Tv

� �2

ΔTv
2 þ @z2

@P2

� �2

ΔP22

s
; (2)

@z2
@Tv

¼ a ln
P1
P2

� �
; (3)

@z2
@P2

¼ aTv
�1
P2

� �
: (4)

All recorded TriSonicaTM data were averaged to the nearest whole second. For each
image, the corresponding day of year in seconds was calculated and the altitude index
with the smallest difference between the TriSonicaTM and image day of year in seconds
was selected. This altitude was referred to as the altitude in metres of the camera gimbal
above ground level.

With the altitude of the camera gimbal known, trigonometric relationships were
derived to calculate the geographic coordinates of the four corners, the four midpoints,
and centre of each projected image on the surface of the Earth. The gimbal pitch angles
for the top and bottom of each image were calculated by adding and subtracting half of
the VFOV to the gimbal pitch angle, respectively. If the top pitch angle was greater than or
equal to -1°, the top pitch angle was adjusted to equal -1° to ensure that all image pixels
included the Earth’s surface. All angles used in the georeferencing calculations were
converted to radians.

In total, the TANAB2 was launched at three locations during the entire field campaign.
The TANAB2 was only deployed at a maximum of one location each day. Using Google
Earth, the surface elevation above sea level was calculated for each launch location at the
site. Using a variation of the Haversine formula, the distance between the gondola
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coordinates (lat2 and lon2) and each of the three launch locations (lat1 and lon1) were
calculated, and the minimum distance was chosen, for which a base altitude from Google
Earth was assigned. The distance is calculated using

dlaunch ¼ R 2atan2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

lat2 � lat1
2

� �
þ cosðlat1Þcosðlat2Þsin2 lon2 � lon1

2

� �s"

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðsin2 lat2 � lat1

2

� �
þ cosðlat1Þcosðlat2Þsin2 lon2 � lon1

2

� �s
ÞÞ
#
; (5)

where R represents the Equatorial Radius of the Earth in kilometres. The geographic
location associated with the smallest value of dlaunch was determined to be the TANAB2
deployment location. With the smallest distance known, the appropriate base altitude in
metres above sea level was assigned for each image.

The direct georeferencing workflow functioned by considering surface elevation with
respect to geographic distance away from each TANAB2 launch location for the eight
cardinal directions (north, north-west, west, south-west, south, south-east, east, and
north-east) and the line of sight from the camera for a given image pixel. Land surface
elevation data in metres above sea level for the eight cardinal directions up to 10 km away
from each TANAB2 deployment location were obtained from the Geocontext-Profiler
(http://www.geocontext.org/publ/2010/04/profiler/pl/(Accessed 23 September 2019))
and saved as individual text files. The camera gimbal Yaw angles were recorded in
degrees, positive clock-wise from north. If the Yaw angles were negative, 360� was
added to the gimbal Yaw angle. Based on the Yaw angle of the camera gimbal and the
base altitude, the appropriate file, containing data from the Geocontext-Profiler, was
loaded into the Python script and a third-order polynomial was fitted to the data. Third-
order models have been used to represent curved Earth surfaces (Schmidt, Evans, and
Brinkmann 2003), such as those encountered in this mining facility.

The line of sight for a given image pixel was constructed by calculating the slope,
which is represented by the tangent of the pitch angle. For example, for the top centre
pixel, the tangent of the top pitch angle is the slope of the line of sight for the top pixel,
equal to the TANAB2 altitude divided by the horizontal distance from the base of launch
to where the line of sight intercepts the horizontal axis. This slope is negative because the
camera’s line of sight is alway below horizon.

From the derived third-order polynomial for land surface elevation, the horizontal
distance from the TANAB2 to where the image pixel is pointing to was determined
(dhoriz). The roots of the intersection of the polynomial curve and the line of sight give
the horizontal distance. If the roots were not real, the specific image was omitted from the
ST calculation process. If multiple roots were found, the smallest real positive solution was
chosen. If dhoriz was greater than 100 km then the pixel was omitted from the analysis.

With the horizontal distance from the TANAB2 to where the image pixel is pointing to
known, the geographic coordinate pair for the corresponding horizontal (left to right) and
vertical (top to bottom) pixel locations in the image were calculated using a variation of
the Haversine formula
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Lat2 ¼ asin½sinðLat1Þcos dhoriz
R

� �
þ cosðLat1Þsin dhoriz

R

� �
cosðYawÞ� (6)

Lon2 ¼ Lon1 þ atan2ð½sinðYawÞsin dhoriz
R

� �
cosðLat1Þ�

; ½cos dhoriz
R

� �
� sinðLat1ÞsinðLat2Þ�Þ; (7)

where Lat2 and Lon2 represent the geographic coordinates for the projected image pixel
pair, Lat1 and Lon1 represent the geographic coordinates of the TANAB2 gondola when
the image was recorded, and dhoriz represents the horizontal distance the projected image
pixel is away from the TANAB2 in kilometres. The geographic coordinates for the top
centre, middle, and bottom centre of each image were calculated.

When determining the geographic coordinates for the image corners and edge mid-
points, the geographic distance from the TANAB2 and the edge of the image was
calculated

dedge ¼ dhoriz
cosð0:5HFOVÞ ; (8)

where dedge represents the geographic distance in kilometres from the TANAB2 to the top,
middle, and bottom of the projected image edge (both left and right edges), and HFOV
represents the camera horizontal field of view. In total, three dhoriz values were used, one
for pixels at the top of the image, another for pixels in the middle of the image, and one
for pixels at the bottom of the image. With dedge known, dhoriz is replaced accordingly such
that geographic coordinate pairs along edges of each image can be calculated.

With the coordinate pairs of midpoints of the centre, edges, and corners of each image
calculated, pixels within the image matrix were georeferenced and the corresponding ST
values were calculated accordingly. For instances, where a new pitch angle for the top of
the image was assigned (for images whose portion of the top needed to be eliminated),
a mathematical relationship was derived to quantify which image pixel rows from the top
were to be omitted from the image processing analysis.

Figure 4 provides an illustration for the angles used to correlate image pixel position to
geographic coordinate location. P0, Px, P256, and P512 represent the top, the new top, the
centre, and the bottom pixel rows, respectively, as each image has 640 horizontal pixels and
512 vertical pixels. Yt, Ytx, Yc, and Yb represent the horizontal geographic distances away
from the TANAB2 for the top, new top, centre, and bottom of each image, respectively. θ
represents the camera gimbal pitch angle, 13� is half of the VFOV, and γ and β are angles
that are used to correlate pixels to distances using

γ ¼ atan
dhoriztop
zAGL

� �
; (9)

β¼ 90� � jθj þ 0:5VFOV� γ; (10)
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X ¼ 0:5VPRsinðβÞ
sinð0:5VFOVÞsinð180� � ηÞ ; (11)

where VPR is the Vertical Pixel Range (512 based on the camera specifications). Note
dhoriztop is the horizontal distance that TANAB2 makes with the land location associated
with the top of the image, and zAGL is altitude above ground level. The new top pixel, X ,
was derived from Figure 5 by applying the sine law and rearranging the equation. Figure 5
displays the red triangle, illustrating the vertical camera view from the TANAB2 in greater
detail. X represents the number of pixel rows to omit from the top of the image which is
a function of the new top angle in the instance that the top pitch angle is greater than -1°.

Figure 4. Relationship between pixels and horizontal geographic distances.

Figure 5. Relationship between vertical image pixels and the camera VFOV.
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Considering all image pixels was not a possibility due to the extreme volume of
computational operations required. Instead, a geometric step function was implemented
to identify which pixel rows to consider for ST. This was motivated by the fact that pixels
near the top of the image correspond to more land surface coverage, so they must be
analysed at higher resolution. The geometric step function was achieved using the
following equation and coefficients

ypixel¼ 18ð1:41Þn; (12)

where n ranges from 2 to 10. The first two pixel rows to process were chosen to be 0
and 18. Equation (12) yields the corresponding pixel rows: 35, 50, 71, 100, 141, 199, 281,
and 396. These rows were selected because they are densely packed in the top half of
each image. The geographic distance between pixel rows at the top of an image would
be greater than the geographic distance of pixel rows at the bottom of an image. To
optimize processing efficiency and increase ST spatial distribution, the coefficients in
Equation (12) were chosen to satisfy the desired image processing criteria. Depending
upon application, this pixel row processing workflow can be changed to increase or
decrease the number of pixels used in the ST calculations accordingly. The horizontal
pixel step was set at a fixed value of 64. For each image, every 64th pixel column was
used in the ST calculation.

When iterating through the image pixel matrix, β and γ angles were calculated for each
pixel coordinate and a corresponding camera line of sight was calculated. Based on the
relationship identified in Figures 4 and 5, the sine law was employed in Equation (13) to
derive Equation (14). The resulting slope of the camera line of sight for each pixel
coordinate pair was used to relate the pixel pairs to geographic distances used to
georeference pixels within the image as completed with Equations (6) and (7)

sinð0:5VFOVÞ
sinðκÞ½0:5VPR� ¼

sinð0:5VFOV� βÞ
sinðηÞ½0:5VPR� j� ; (13)

β ¼ �atan
½0:5VPR� j�sinð0:5VFOVÞ

0:5VPRsinðκÞ
� �

þ 0:5VFOV; (14)

γ¼ 90� � jθj þ 0:5VFOV� β; (15)

Slope ¼ �1
tanðγÞ : (16)

Here, j is the location of the pixel coordinate row from top to bottom. With the slope for
the camera line of sight for a particular pixel coordinate pair known, the intersections
between the third-order model representing the land surface and the pixel line of sight
were derived. The smallest real positive solution was chosen to be the projected hor-
izontal distance away from the TANAB2 for pixels located in the middle column (pixel 320
from left to right) of the image. Pixels horizontally adjacent to the centre of an image
required an adjustment to the heading degree (Yaw). The offset angle (α) to apply to the
heading degree was determined to be a function of the HFOV of the camera. Depending
on the location of the pixel coordinate column i from left to right, the angular offset
formula varied

INTERNATIONAL JOURNAL OF REMOTE SENSING 3131



αi¼0 ¼ �HFOV
2

; (17a)

αi > 0;i< 320 ¼
� HPR

2 � i
� �

HFOV

HPR
; (17b)

αi¼320 ¼ 0; (17c)

αi > 320;i< 640 ¼
i � HPR

2

� �
HFOV

HPR
; (17d)

αi¼640 ¼ HFOV
2

; (17e)

where HPR represents the Horizontal Pixel Range (640 pixels based on the physical
camera specifications). The Yaw heading of the camera gimbal corresponded to the
middle of the image. As a result, the heading for any pixels to the left of the centre of
the image required the angular offset to be removed from the recorded Yaw. Likewise,
any pixels to the right of the image required the angular offset to be added to the
recorded Yaw. In cases where the addition of the angular offset to the heading angle
resulted in a negative value or a value greater than 2π radians, then 2π radians were either
added or subtracted, respectively, to ensure that only positive angles between 0 and 2π
radians were passed to Equations (6) and (7).

2.4. Surface temperature calculation

Using ExifTool and ImageMagick, recorded signal values from individual pixels were
extracted and saved to a matrix in the Python script. These raw signal values were
converted to surface temperatures considering a variation of Planck’s Law.

Due to field conditions and physical limitations encountered at the mining facility,
errors introduced from reflections and transmission could not be accounted for. However,
the thermal camera used in the field campaign was calibrated in a pre-field campaign
outdoors experiment on campus at the University of Guelph, Guelph, Ontario, Canada.
Three radiometric images were captured roughly 30 s apart for every hour between 06:00
and 23:00 Local Daylight Time (LDT) over two consecutive days. The 30-s time interval was
selected as Olbrycht and Więcek (2015) noted that uncooled thermal cameras can
experience temperature drift up to 1 K per minute if a radiometric calibration was not
recently completed. Four different land surface types were imaged including water, soil,
grass, and developed land (urban surfaces). Each image included a certified thermometer
which measured the corresponding land surface temperature as recorded by the image.

Surface temperatures from the top of the thermometer were calculated from the
thermal images using FLIR Tools. For each hourly image set, the average of the surface
temperatures derived in FLIR Tools was calculated and used to calibrate the R, B, O, and F

constants accordingly, where R ¼ R1
R2
. The temperatures recorded by the certified thermo-

meter were scaled to adjust for the test location’s height above sea level (334 m for
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Guelph, Ontario, Canada). For the thermal image temperatures, UObj was calculated from
Equation (18).

UObj ¼ R

exp B
TObj

� �
� F

� O; (18)

where UObj represents the radiative energy emitted from the imaged object, TObj repre-
sents the surface temperature of the imaged object derived from FLIR Tools, R represents
the uncooled camera response, B is a constant related to Planck’s radiation law, F relates
to the non-linear response of the thermal imaging system, and O represents an offset
(Budzier and Gerlach (2015)). Equation (18) can be rearranged to calculate TObj as per
Equation (19).

TObj ¼ B

ln R
UObjþO þ F

� � : (19)

The R, B, O, and F constants used to calculate the UObj value were the default constants
stored in the metadata of each thermal image. The default constants and calibrated
constants are displayed in Table 2.

Using the empirical line method, described by Smith and Milton (1999), the UObj values
and the corresponding certified thermometer temperatures were plotted against each
other to calibrate the constants used in Equation (19) as a function of land surface type.
The figures illustrating the empirical line method are displayed in Figure 6. The Non-Linear
Least-Squares Minimization and Curve-Fitting (LMFIT) of Python library version 0.9.13 was
used with Equation (19) to fit and optimize the camera constants while minimizing
residuals for each specific land surface type.

Using the LMFIT library to fit camera constants for each land surface ultimately reduced
the bias and RMSE valueswhen compared to the default camera constants shown in Table 3.
Using the calibrated constants for the calculation of land ST at the mining facility improved
accuracy of the measurement. These findings are comparable to Gallardo-Saavedra,
Hernández-Callejo, and Duque-Perez (2018) who reported that the manufacturer stated
accuracy of the FLIR Vue Pro R 640, Tau 2 640, and Zenmuse XT 640 was � 5 K. Similarly,
Kelly et al. (2019) used the empirical line calibrationmethod for a FLIR Vue Pro 640 uncooled
thermal camera and quantified the accuracy of the camera to be � 5 K.

Camera constants were applied to the surfaces within the mining facility with geogra-
phical coordinates closest to the calibrated land use categories. The effect of emissivity
was considered by using the BroadBand Emissivity (BBE) as described by Wang et al.
(2005) and calculated in Equation (20)

Table 2. Default and calibrated camera parameters.
Camera parameters R B O F

Default 366,545 1428 −342 1
Calibrated water 549,789 1507 −171 1.5
Calibrated soil 549,800 1510 −171 1.5
Calibrated developed land 247,614 1322 −513 1.5
Calibrated grass 314,531 1391 −513 1.5
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BBE ¼ a�29 þ b�31 þ c�32; (20)

where a, b, and c are constants that vary as functions of land surface, and �29, �31, and �32
are emissivities derived from the MOD11B3 MODIS data product from bands 29, 31, and
32, respectively. Wang et al. (2005) determined that a, b, and c constants are similar for
vegetation, soil, and anthropogenic materials. As a result, the a, b, and c coefficients were
selected to be 0.2122, 0.3859, and 0.4029, respectively (Wang et al. (2005)).

The total signal (UTot) recorded by the uncooled thermal camera can be separated into
three components as in Equation (21). The first component represents the radiative
energy emitted from the imaged object (UObj), the second component represents the
reflected energy from the imaged object (URefl), and the third component accounts for the
radiative energy transmitted from the atmosphere (UAtm). � represents the emissivity of
the surface and is accounted for by Equation (20) and τ represents the transmissivity of
the atmosphere whose value is generally close to 1.0 (Usamentiaga et al. (2014)). As
a result, only the radiative energy reflected and emitted from the imaged object are
considered in Equation (21), where to retrieve UObj and subsequently TObj, URefl is removed
from UTot. The calibration of camera constants was completed to correct for incoming
reflected radiation via

UTot ¼ �τUObj þ τð1� �ÞURefl þ ð1� τÞUAtm: (21)

(a) (b)

(c) (d)

Figure 6. Certified temperature compared to radiometric image pixel signal value for water, soil,
developed land, and grass.
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2.5. Principal component analysis (PCA)

In order to determine the geographical direction for which one has the largest variations
in surface temperature, a PCA was performed. PCA is a very well-known approach for
analysing data (especially large data) to deduce meaningful conclusions about it. The
principle behind PCA lies in the fact that it can mathematically determine the principal
components (eigenvectors) showing the directions of the largest deviations in the data;
for more information about PCA see for instance the work of Jolliffe (2002). Note that this
method gives the main axes along which the variations in the data are the largest. In this
analysis, it was of interest to find the direction of the land for which the temperature
gradient was the largest at any given time window. Therefore, the axis that had the most
variation was picked and the results were analysed accordingly. PCA was conducted for 6
four-hour time intervals.

3. Results and discussions

Three analyses were conducted on the processed image data. The first analysis represents
median ST distribution at a spatial resolution of 1 km � 1 km derived from images
recorded over the entire length of the field campaign. In total, 6 four-hour time intervals in
LDT (00:00–04:00 LDT, 04:00–08:00 LDT, 08:00–12:00 LDT, 12:00–16:00 LDT, 16:00–20:00
LDT, and 20:00–24:00 LDT) representing ST for the entire field campaign were produced
highlighting diurnal ST variation with respect to the mining facility boundary, the mine,
and the tailings pond as displayed in Figure 7. Corresponding box plots representing the
temperature variation of the mine and tailings pond are also included for each time
interval as per Figure 8. For each survey, on average 1,910 images were used for each four-
hour time interval.

The second analysis focuses on comparing the calculated ST derived from the images
collected on 24 May 2018 over the 12:00–14:00 LDT time interval with respect to the
MODIS MOD11A1 image recorded during the early afternoon on 24 May 2018. Three plots
were created (as per Figure 9) including the ST spatial distribution map at 1 km � 1 km
resolution derived from the workflow, the MOD11A1 dataset for each corresponding ST
tile, and the absolute error for each tile is included.

The third analysis focuses on identifying the horizontal direction of the highest
temperature variances. The direction with the highest temperature variances for each
time interval was calculated from the images collected during the field campaign by
completing a PCA on the data derived from each time interval. The results are presented
in Figure 10.

Table 3. Default and calibrated camera parameter statistics.
Surface Water Soil Developed land Grass

Default bias (K) 5.18 4.81 1.83 2.07
Default RMSE (K) 5.83 5.34 3.91 2.34
Calibrated bias (K) 0.27 −0.09 0.13 −0.24
Calibrated RMSE (K) 2.40 1.57 3.31 1.11
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3.1. Diurnal variation

Surface temperaturemaps with a spatial resolution of 1 km � 1 km for the entire mining
facility at 6 four-hour time intervals are displayed in Figure 7. These plots were created by
calculating the median temperature for all data recorded within each time interval over the
entire field campaign within a 1 km � 1 km surface area (or tile). The axes represent
distance in kilometres and the colour bar represents surface temperature in Kelvin.

Box plots (Figure 8) representing the surface temperature range in Kelvin of the two
key geographical features of the mining facility, the mine and the tailings pond, at the
corresponding 6 four-hour time intervals were created to compare ST variation diur-
nally. The ST values included in the box plot are located within the red and teal
perimeters of the mine and tailings pond, respectively, shown in Figure 3. The black
circles represent temperature values outside of the 95th and 5th percentiles. The upper

(a) (b)

(c) (d)

(e) (f)

Figure 7. Median temperatures over four-hour time intervals at 1 km � 1 km resolution; times are in
Local Daylight Time (LDT).
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black line and lower black line of the box correspond to the 95th and 5th percentiles.
The middle orange line represents the median surface temperature of each geographi-
cal feature.

During the 00:00–04:00 LDT time interval, there was a distinct temperature gradient
between the mine, the land west of the pond, and the pond itself. This gradient is further
quantified by the corresponding box plot where the median surface temperature gradient
between the two surface features was approximately 20 K.

There was a clear surface temperature gradient between the mine and the pond during
the 04:00–08:00 LDT time interval. However, the magnitude of the temperature gradient
between the mine and the pond was the lowest during this time period. Both the surface
temperature map and the box plot display this trend as this time interval includes images
captured during and after sunrise.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Box plots representing temperature distribution over four-hour time intervals for the tailings
pond and mine, where the orange line is the median temperature; times are in Local Daylight Time
(LDT).
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Over the 08:00–12:00 LDT interval, the surface temperatures of both the mine and the
pond increase. Likewise, the temperature gradient between the two land surface features
also grows, where the mine’s ST is higher than the tailings pond ST.

During the 12:00–16:00 LDT interval, an apparent temperature gradient existed
between the tailings pond and the mine. The area to the north-west of the mine had
a lower surface temperature as compared to areas south and east of the mine.

The variability of surface temperatures between the mine and the pond decreased over
the 16:00–20:00 LDT interval. Although a clear temperature gradient was present, the box
plot displays a narrower temperature range as compared to most other time intervals.

The same temperature gradient as discussed during other time periods occurs within
the 20:00–24:00 LDT period. There are a few data gaps for ST north-west of the mine as the
TANAB2 was deployed less during these hours compared to other time windows.
Nonetheless, the west side of the pond possesses a lower surface temperature as com-
pared to the mine itself. The overall surface temperature magnitude for both land surface
features was determined to be decreasing during this interval, after sunset.

3.2. Comparison to satellite observations

On 24 May 2018 MODIS on the Terra satellite imaged the remote mining site during the
early afternoon. The TANAB2 was launched within the mine between 12:00 and 14:00 LDT
on the same date. Figure 9 displays the surface temperatures recorded by the thermal
camera from the TANAB2, the surface temperatures recorded by MODIS from the
MOD11A1 dataset, and the absolute error between the two datasets.

Absolute error with respect to MODIS temperatures on 24 May 2018 was calculated
and the spatial distribution of temperature bias is displayed in Figure 9. The maximum,
minimum, and median absolute error were calculated to be 14.3 K, � 12.2 K, and 0.64 K,
respectively. The bias and RMSE were determined to be 0.5 K and 5.45 K, respectively.
Furthermore, it was noted that the absolute error increased north-west of the mine,
towards the pond. This likely occurred as the TANAB2 was launched within the mine,
below grade level (with respect to the mining facility), while the land elevation increases
north-west of the mine towards the tailings pond. With this change in elevation, the
calculated surface temperatures north-west of the mine are estimated from very oblique
angle images, possibly explaining the increased error. In addition, that region contains
very localized hot spots, such as pipelines, that are beyond MODIS data product resolu-
tions to be detected by the satellite but within the resolution of the thermal images in the
current method. This can also explain the discrepancy between the methods. On the
other hand, the elevation of the land surface decreased south and east of the mine. This
decrease is likely attributed to less oblique images and therefore lower absolute error
between the two datasets. Nevertheless, the localized warm regions of surface tempera-
tures within the mine and east of the mine recorded by MODIS were also captured from
the thermal images as displayed by the surface temperature plots in Figure 9.

The increase in error between the mine and the pond can be accounted for from the
rapid change in topography. In this region, the bottom of the mine pit is approximately
100 m into the earth. Conversely, the area directly to the east of the pond (the levee) is the
highest location of the entire site. The total change of land surface elevation between the
mine and the pond is very significant and may not be fully considered by the digital
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elevation model acquired from Google Earth. Wang et al. (2017) evaluated the accuracy of
elevation data provided by Google Earth for over 20,000 locations of the conterminous
United States. They determined that the mean average error, RMSE, and bias of elevation
was 10.72 m, 22.31 m, and 0.13 m, respectively. Based on Wang et al. (2017), Google Earth
accuracy varies significantly by location. Furthermore, since the landscape of the mining
facility is changing rapidly, the use of the Google Earth elevation data likely introduces
further error into the method. For more accurate results, sUAS-based lidar could be
a feasible solution, especially in areas where high time resolution data is required or
very high resolution satellite imagery capable of creating elevation models is required
(Gray et al. (2018); Akturk and Altunel (2019); Nemmaoui et al. (2019)).

Further improvement of the imaging workflow may also reduce errors. The imaging
method only considers elevation profiles for the eight cardinal directions of each TANAB2
launch site. Using a Digital Elevation Model (DEM) raster and QGIS, the elevation profile for
individual images could be quantified programmatically in Python. The elevation profiles
for individual pixels within the image could also be quantified using this method.
However, the accuracy of this method is dependent upon the accuracy and resolution
of the DEM data source. Nonetheless, the accuracy of the Google Earth elevation data was
deemed to be acceptable for this application.

Using oblique and very oblique images in the method may have contributed to surface
temperature error even with using the corrected camera parameters R, B, O, and F.

(a) (b)

(c)

Figure 9. Comparison between the developed thermal imaging method and the MODIS MOD11A1
dataset and absolute error between the two methods; (a) median ST from 24 May 2018 12:00–14:00
LDT as recorded by the thermal camera at a 1 km � 1 km resolution; (b) daytime temperatures
captured by MODIS recorded during the early afternoon on 24 May 2018 and derived from the
MOD11A1 dataset at a 1 km � 1 km resolution; (c) absolute error between the two methods at a 1 km
� 1 km resolution; times are in Local Daylight Time (LDT).
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Oblique imaging is known to affect observed surface temperatures as a function of
camera pitch angle (Dugdale (2016)). Increasingly oblique imaging angles can result in
a higher proportion of reflected radiation and more varied emissivity values over water-
bodies (Torgersen et al. (2001); Dugdale (2016); Baker et al. (2019)). The proportion of
waterbodies within the mining facility is low and even the tailings pond may not truly be
representative of a pond due to byproducts introduced from the mine ore extraction
process. It is known that imaging angles higher than 30� of nadir can affect surface
temperature by 0.5 K (Torgersen et al. (2001); Kay et al. (2005); Dugdale (2016)). For land
surfaces, James et al. (2006) recorded lava flows with � 3 % radiative power differences.
The areas with the highest temperature error were not waterbodies. Oblique images of
land surfaces likely have less impact on emissivity as opposed to images of waterbodies.
Nonetheless, the presence of this error source is acknowledged in this study.

Other than surface elevation variation, calculated temperature errors may have been
introduced from the camera constant calibration completed in Guelph, Ontario, Canada.
The surface materials at the mining site may have been different as opposed to the tested
surface temperatures recorded during the calibration experiment. The difference in physical
properties may have contributed to the increased minimum and maximum errors of � 12.2
K and 14.3 K, respectively. However, the overallmedian errorwas calculated to be 0.64 Kwhich
is significantly below the manufacturer reported accuracy of � 5 K and the calibrated
accuracy of a FLIR Vue Pro 640 of � 5 K (Gallardo-Saavedra, Hernández-Callejo, and Duque-
Perez (2018); Kelly et al. (2019)). These elevatedmaximum andminimumerrorsmay be due to
highly oblique images, near horizontal, where reflected radiation can significantly impact the
radiometric measurement. To avoid these errors, deploying the TANAB2 at a higher altitude
would be necessary to reduce oblique imaging angles. However, this was not possible as the
TANAB2 launch height was predetermined from aviation and site-specific regulations.

3.3. Principal component analysis

The result of our PCA analysis is shown in Figure 10. As can be seen, the highest surface
temperature variation is along the north-west-south-east plane. Referring to Figure 3, the
north-west-south-east plane intersects the mine and processing facilities to the south-east
and the pond and forest to the north-west. This surface temperature variation was present
in each time interval, especially during 00:00–04:00 LDT, 04:00–08:00 LDT and 16:00–20:00
LDT, where the normalized PCA horizontal directions are close to overlapping each other.

4. Conclusion and future work

A novel small Unmanned Aerial Systems (sUASs)-based and open-source thermal image
processing approach was developed to directly georeference and calculate Earth surface
temperature with a high spatiotemporal resolution. An uncooled thermal camera was
launched on a tethered balloon during May 2018 at a remote northern Canadian mining
facility. Based on the topography of the surrounding land, the camera’s GPS location, the
balloon altitude, and the camera’s Pitch, Yaw, and Roll angles, individual pixels within each
image were directly georeferenced by assigning a calculated longitude and latitude to
each respective pixel. The derived imaging workflow was developed for images recorded
with oblique angles relative to the land surface. The calculated land surface temperatures
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accurately represented the diurnal variation of surface temperature with a high degree of
spatiotemporal accuracy as compared to conventional remote sensing techniques includ-
ing satellites. A comparison between a MODerate resolution Imaging Spectroradiometer
(MODIS) satellite image and the results from our imaging workflow yielded a bias of 0.5
K and a Root Mean Square Error (RMSE) of 5.45 K of land surface temperatures within and
surrounding the mine. A principal component analysis was conducted for each four-hour
time interval and the horizontal direction with the highest surface temperature variation
was the north-west-south-east direction. The principal component analysis agreed well
with the diurnal surface temperature maps and the MODIS images.

This paper helps support the validity of the discussed workflow as an alternative to
conventional thermal imaging devices and commercially distributed image processing
software. Further verification of this workflow and its application to other land surface
environments and applications, such as search and rescue operations, monitoring of
urban micro-climates, and thermal plumes in waterbodies, may be considered. Likewise,
additional corroboration with other satellite-based sensors and use of the thermal ima-
ging system on other sUASs and Unmanned Aerial Vehicles (UAVs) systems could be
explored in future studies.
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